دیده بان پیشرفت علم، فناوری و نوآوری

هوش مصنوعی چگونه خطا‌های رادیولوژی را کاهش می‌دهد؟

هوش مصنوعی چگونه خطا‌های رادیولوژی را کاهش می‌دهد؟
عضو هیئت علمی دانشگاه علوم پزشکی شهید بهشتی گفت: هوش مصنوعی تفاوت‌های درون فردی یا بین فردی در تشخیص ضایعات را کاهش داده و باعث افزایش انسجام تشخیصی بین رادیولوژیست‌های مختلف می‌شود.
کد خبر : 939942

به گزارش آنا، فریبرز فائقی مدیر گروه تکنولوژی پرتوشناسی دانشگاه علوم پزشکی شهید بهشتی گفت: رادیولوژی و تصویربرداری پزشکی را متشکل از رادیولوژیست، رزیدنت، کارشناس و فیزیست تصویربرداری پزشکی هستند که در قالب یک مجموعه واحد برای تشخیص سریع، دقیق و زودهنگام بیماری‌ها و همچنین بررسی و پایش پاسخ به درمان بیمار فعالیت می‌کنند.

وی رادیولوژی و تصویربرداری پزشکی را تلفیقی از علم، دانش، تخصص، فناوری و هنر تلفیق و به‌کارگیری اصولی این موارد برای تشخیص بیماری‌ها دانست و یادآور شد: به دلیل نقش ویژه این رشته در تشخیص بیماری‌های مختلف به آن " چشم عالم پزشکی "نیز گفته می‌شود.

مدیر گروه تکنولوژی پرتوشناسی دانشگاه علوم پزشکی شهید بهشتی با اشاره به گسترش کاربرد هوش مصنوعی در زندگی بشری و علوم و تخصص‌های مختلف گفت: در علوم پزشکی از جمله رادیولوژی و تصویربرداری پزشکی شاهد گسترش کاربرد هوش مصنوعی در حوزه‌های تشخیص، آموزش، پژوهش و درمان هستیم.

به گفته وی ورود هوش مصنوعی باعث ایجاد تحولی شگرف در امر آموزش و یادگیری رادیولوژی بالینی، پایه و علوم تصویربرداری پزشکی شده است.

قائقی به طراحی و ارایه اپلیکیشن‌های آموزشی با استفاده از فناوری هوش مصنوعی اشاره کرد و افزود: این موضوع باعث ایجاد بستر مناسبی برای ارایه آموزش‌های تعاملی (interactive)، سازگاریافته با شرایط خاص، کسب تجارب یادگیری موثر در زمینه‌های مختلف علمی و پیچیده آموزش علوم پایه و بالینی به فراگیران شده است.

این دکترای تخصصی فیزیک پزشکی، یادگیری ارتقا یافته با فناوری را یکی از موارد بسیار مهمی برشمرد که امروزه در دنیا و ایران مورد توجه قرار دارد.

به گفته این استاد دانشگاه با اپلیکیشن‌ها و پلتفرم‌های مذکور بستر مناسبی برای آموزش مفاهیم پیچیده بالینی و افزایش مهارت پزشکان و دستیاران در حوزه تشخیص ضایعات با استفاده از تصاویر فراهم می‌شود. از دیدگاه فناوری تصویربرداری پزشکی نیز می‌تواند مهارت‌های تخصصی مورد نیاز برای تهیه تصاویر با کیفیت بالا و متناسب با نیاز بالینی و شرایط هر بیمار را به تکنولوژیست‌ها ودانشجویان این رشته آموزش دهد.

فائقی استفاده از واقعیت مجازی یا Virtual learning برای یادگیری و آموزش را از دیگر ابزاری عنوان کرد که با شبیه‌سازی شرایط بالینی توانسته امکان یادگیری موثر فراگیران را بدون ایجاد ریسک برای بیمار فراهم کند و یادآور شد: اغلب اپلیکیشن‌ها از قابلیت طراحی و انجام آزمون بر روی مخاطبان و ارایه نمره و فیدبک به فراگیران برخوردار هستند.

وی با اشاره به نقش AI یا همان هوش مصنوعی در تشخیص و افزایش سرعت و دقت آن در حوزه رادیولوژی گفت: از کاربرد‌های اصلی هوش مصنوعی در رادیولوژی می‌توان به تمرکز بر ارتقای تحلیل تصاویر، تشخیص دقیق‌تر ضایعات، کمی سازی داده‌های تصویری و ارتقای مهارت تفسیر داده‌های پیچیده تصویری اشاره کرد.

مدیر گروه تکنولوژی پرتوشناسی دانشگاه با توجه به وجود الگوریتم‌های هوش مصنوعی در تفسیر تصاویر پزشکی افزود: از یادگیری عمیق یا Deep learning نیز می‌توان برای تفسیر تصاویر رادیوگرافی CT Scan و MRI استفاده کرد.

وی خاطرنشان کرد: شبکه‌های عصبی کانولوشنال یا CNN نیز از توانایی بالایی در تشخیص ضایعات پاتولوژیک ریه (نظیرپنومونی)، شکستگی‌ها، توده‌ها و سرطان‌های ریه برخوردار هستند و استفاده از این الگوریتم‌ها باعث افزایش دقت و سرعت تشخیص ضایعات و بیماری‌ها با استفاده از تصاویر پزشکی می‌شود.

به گفته وی شبکه عصبی کانولوشنال یا CNN، شبکه عصبی قدرتمند و پرکاربرد در یادگیری عمیق است که برای پردازش داده‌های شبکه‌ای (Grid-Structured Data) مانند تصاویر به کار می‌رود.

فائقی نقش موثر AI در افزایش دقت و سرعت تشخیص ضایعات را یادآور شد و گفت: الگوریتم‌های هوش مصنوعی تغییرات ایجاد شده در پارامتر‌ها و مشخصه‌های تصویری را به صورت سرنخ‌ها و راهنما‌های نشانه گذاری تشخیص داده و توجه رادیولوژیست و پزشک را به سمت نواحی مشکوک بدن بیمار جلب کرده و باعث تسریع شناسایی و تشخیص ضایعات می‌شوند.

این دکتری تخصصی فیزیک پزشکی خاطرنشان کرد: هوش مصنوعی با انجام محاسبات و اندازه گیری‌های کمی نظیر سایز، حجم و سرعت رشد تومور می‌تواند روند پیشرفت بیماری یا پاسخ به درمان بیماران را پایش و ارزیابی کند.

وی از دیگر کاربرد‌های هوش مصنوعی به استخراج و نمایش تغییرات پارامتر‌های همودینامیکی حاصل از آزمایشات پرفیوژن سی تی و MR مغز اشاره کرد و آزمایشات پرفیوژن را یک آزمایش تصویربرداری تشخیصی غیر تهاجمی برشمرد که برای ارزیابی جریان خون در مغز استفاده می‌شود.

فائقی افزود: با استفاده از یافته‌های این آزمایش می‌توان ضمن مشخص کردن ناحیه ایسکمی یا اینفارکت مغزی از نظر محل، اندازه و سرعت رشد با دقت بالا، مناسب‌ترین روش درمان را تعیین کرد و به بررسی و ارزیابی پاسخ بیمارمبتلا به ایسکمی حاد مغزی به درمان پرداخت.

این عضو هیئت علمی دانشکده پیراپزشکی، هوش مصنوعی را باعث کاهش خطا‌ها و همپوشانی‌های رادیولوژی و تصویربرداری پزشکی عنوان کرد و افزود: هوش مصنوعی ضمن کمک به تشخیص ضایعات تصادفی، تفاوت‌های درون فردی یا بین فردی در تشخیص ضایعات را کاهش داده و باعث افزایش انسجام تشخیصی بین رادیولوژیست‌های مختلف می‌شود.

مدیر گروه تکنولوژی پرتوشناسی هوش مصنوعی یا AI را باعث تسریع تحقیقات و متدولوژی‌های جدید در پژوهش‌های تصویربرداری و رادیولوژی عنوان کرد.

به گفته وی هوش مصنوعی به کشف و شناسایی بیومارکر‌های تصویربرداری یا نشانگر‌های قابل اندازه گیری برای تشخیص بیماری یا روند رشد آن کمک می‌کنند.

فائقی خاطرنشان کرد: الگو‌های بسیار کوچک در تصاویر MRI که با چشم انسان قابل رویت نیستند را از طریق الگو‌ها و مدل‌های یادگیری ماشین می‌توان شناسایی کرد و از آنها برای تشخیص بیماری کمک گرفت که تحقیقات آلزایمر و بیماری‌های خودایمنی و MS نمونه‌هایی از این تحقیقات هستند.

وی با بیان این که هوش مصنوعی امکان کار بر روی داده‌های بزرگ یا Big Data و تجزیه و تحلیل سریعتر آنها را فراهم می‌سازد گفت: داده‌های تصویربرداری نمونه‌ای از این داده‌های بزرگ به شمار می‌روند. تجزیه و تحلیل و انطباق این داده‌ها با شرایط بالینی و شرح حال بیمار از جمله کاربرد‌های هوش مصنوعی در پیش بینی و تعیین پیش آگهی بیماری براساس تجزیه و تحلیل داده‌های تصویری است.

وی با اشاره به تاثیر AI بر بهبود و کیفیت تصاویر و ارایه جزییات دقیقتر گفت: هوش مصنوعی با استفاده ازتکنیک‌ها و الگوریتم‌های پیشرفته می‌تواند باعث تولید تصاویر واضحتر با جزییات بیشتر و دقیقتر شود و این امر افزایش دقت و کیفیت تشخیصی تصاویر پزشکی را به دنبال دارد.

دکتر فائقی با اشاره به این که هوش مصنوعی باعث افزایش کیفیت و دقت تشخیصی تصاویر می‌شود افزود: پردازش تصاویر با کیفیت پایین و تهیه تصاویر با قدرت تفکیک فضایی و کیفیت تشخیصی بالا از آنها از دیگر ویژگی‌های برخی الگوریتم‌های هوش مصنوعی است.

به گفته وی برای تهیه چنین تصاویری با کیفیت و قدرت تفکیک فضایی و کنتراست بالا، نیازمند افزایش زمان اسکن بیمار هستیم که این زمان طولانی باعث نارضایتی بیمار و طولانی شدن صف انتظار بیماران می‌شود. در حالی که با استفاده از الگوریتم‌های یادگیری عمیق می‌توان به تصاویر با قدرت تفکیک فضایی بالا درزمان‌های کوتاهتری دست یافت.

فائقی در پاسخ به این که آیا AI می‌تواند در آینده جایگزین رادیولوژیست شود، تصریح کرد: گرچه هوش مصنوعی منجر به ایجاد تغییراتی در رادیولوژی شده است و این تغییرات همچنان ادامه دارد و بکارگیری الگوریتم‌های هوش مصنوعی باعث افزایش سرعت، دقت و کیفیت تصویربرداری می‌شود، اما مسلما هیچگاه قادر به جایگزین شدن با رادیولوژیست نیست.

مدیر گروه تکنولوژی پرتوشناسی استفاد از هوش مصنوعی را باعث ارتقای کیفیت ارایه خدمات تشخیصی تصویربرداری پزشکی برشمرد و تاکید کرد: مسئله جایگزینی به هیچ‌وجه مطرح نیست، زیرا اطلاعات بالینی و تکنیکی موردنیاز برای دستیابی به تشخیص در وهله اول توسط رادیولوژیست و فیزیست به این سیستم‌ها وارد می‌شود.

به گفته وی هوش مصنوعی به طور کامل نمی‌تواند به بازتولید ویژگی‌های انسانی ضروری در رادیولوژی نظیر قضاوت بالینی، سازگاری، همدلی و تصمیم‌گیری در شرایط نامشخص بپردازد و استفاده صرف از اطلاعات هوش مصنوعی بدون وجود یک نظارت علمی و انسانی می‌تواند باعث بروز خطا‌های تشخیصی شود.

فائقی خاطرنشان کرد: بخش عمده‌ای از فعالیت‌های رادیولوژیست و تکنولوژیست مربوط به انجام تکنیک‌ها و روش‌های تصویربرداری است که توسط رادیولوژیست و تکنولوژیست مستقیما بر روی بیماران انجام می‌گیرد.

انتهای پیام/

ارسال نظر
قالیشویی ادیب